Abstract

An associahedron is a polytope whose vertices correspond to the triangulations of a convex polygon and whose edges correspond to flips between them. J.-L. Loday gave a particularly elegant realization of the associahedron, which was then generalized in two directions: on the one hand to obtain realizations of graph associahedra, and on the other hand to obtain multiple realizations of the associahedron parametrized by a sequence of signs. The goal of this paper is to unify and extend these two constructions to signed tree associahedra. Un associaèdre est un polytope dont les sommets correspondent aux triangulations d’un polygone convexe et dont les arêtes correspondent aux flips entre ces triangulations. J.-L. Loday a donné une construction particulièrement élégante de l’associaèdre qui a été généralisée dans deux directions : d’une part pour obtenir des réalisations des associaèdres de graphes, et d’autre part pour obtenir de multiples réalisations de l’associaèdre paramétrées par une suite de signes. L’objectif de ce travail est d’unifier et d’étendre ces constructions aux associaèdres d’arbres signés.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.