Abstract

Aims. We investigated the possibility of diagnosing the degree of departure from the Maxwellian distribution using the Fe XVII–Fe XVIII spectra originating in plasmas in collisional ionization equilibrium, such as in the cores of solar active regions or microflares. Methods. The original collision strengths for excitation are integrated over the non-Maxwellian electron κ-distributions characterized by a high-energy tail. Synthetic X-ray emission line spectra were calculated for a range of temperatures and κ. We focus on the 6–24 Å spectral range to be observed by the upcoming Marshall Grazing-Incidence X-ray Spectrometer MaGIXS. Results. We find that many line intensity ratios are sensitive to both T and κ. Best diagnostic options are provided if a ratio involving both Fe XVII and Fe XVIII is combined with another ratio involving lines formed within a single ion. The sensitivity of such diagnostics to κ is typically a few tens of per cent. Much larger sensitivity, of about a factor of two to three, can be obtained if the Fe XVIII 93.93 Å line observed by SDO/AIA is used in conjuction with the X-ray lines. Conclusions. We conclude that the MaGIXS instrument is well-suited for detection of departures from the Maxwellian distribution, especially in active region cores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call