Abstract

TeV-scale extra dimensions may play an important role in electroweak or supersymmetry breaking. We examine the phenomenology of such dimensions, compactified on a sphere S{sup n}, n {ge} 2, and show that they possess distinct features and signatures. For example, unlike flat toroidal manifolds, spheres do not trivially allow fermion massless modes. Acceptable phenomenology then generically leads to ''non-universal'' extra dimensions with ''pole-localized'' 4-d fermions; the bosonic fields can be in the bulk. Due to spherical symmetry, some Kaluza-Klein (KK) modes of bulk gauge fields are either stable or extremely long-lived, depending on the graviton KK spectrum. Using precision electroweak data, we constrain the lightest gauge field KK modes to lie above {approx_equal} 4 TeV. We show that some of these KK resonances are within the reach of the LHC in several different production channels. The models we study can be uniquely identified by their collider signatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call