Abstract

BackgroundPopulations of the teleost fish Fundulus heteroclitus appear to flourish in heavily polluted and geographically separated Superfund sites. Populations from three Superfund sites (New Bedford Harbor, MA, Newark Bay, NJ, and Elizabeth River, VA) have independently evolved adaptive resistance to chemical pollutants. In these polluted populations, natural selection likely has altered allele frequencies of loci that affect fitness or that are linked to these loci. The aim of this study was to identify loci that exhibit non-neutral behavior in the F. heteroclitus genome in polluted populations versus clean reference populations.ResultsTo detect signatures of natural selection and thus identify genetic bases for adaptation to anthropogenic stressors, we examined allele frequencies for many hundreds of amplified fragment length polymorphism markers among populations of F. heteroclitus. Specifically, we contrasted populations from three Superfund sites (New Bedford Harbor, MA, Newark Bay, NJ, and Elizabeth River, VA) to clean reference populations flanking the polluted sites. When empirical FST values were compared to a simulated distribution of FST values, 24 distinct outlier loci were identified among pairwise comparisons of pollutant impacted F. heteroclitus populations and both surrounding reference populations. Upon removal of all outlier loci, there was a strong correlation (R2 = 0.79, p < 0.0001) between genetic and geographical distance. This apparently neutral evolutionary pattern was not evident when outlier loci were included (R2 = 0.092, p = 0.0721). Two outlier loci were shared between New Bedford Harbor and Elizabeth River populations, and two different loci were shared between Newark Bay and Elizabeth River populations.ConclusionIn total, 1% to 6% of loci are implicated as being under selection or linked to areas of the genome under selection in three F. heteroclitus populations that reside in polluted estuaries. Shared loci among polluted sites indicate that selection may be acting on multiple loci involved in adaptation, and loci shared between polluted sites potentially are involved in a generalized adaptive response.

Highlights

  • Populations of the teleost fish Fundulus heteroclitus appear to flourish in heavily polluted and geographically separated Superfund sites

  • New Bedford Harbor is polluted with extremely high levels of polychlorinated biphenyls [37] as well as polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCD), polycyclic aromatic hydrocarbons (PAH), and several trace metals [37,38]

  • Our goal is to understand the genetic basis of adaptive resistance to pollution in chronically contaminated natural populations

Read more

Summary

Introduction

Populations of the teleost fish Fundulus heteroclitus appear to flourish in heavily polluted and geographically separated Superfund sites. Populations from three Superfund sites (New Bedford Harbor, MA, Newark Bay, NJ, and Elizabeth River, VA) have independently evolved adaptive resistance to chemical pollutants. BMC Evolutionary Biology 2008, 8:282 http://www.biomedcentral.com/1471-2148/8/282 ble due to advances in molecular biology and statistics [19,20,21,22,23,24,25,26,27,28,29,30,31] This recent expansion into studies of non-model systems allows further development of evolutionary inferences [32], such as the role that selection, mutation, gene flow, and drift play in adaptation [33]. The Elizabeth River is predominantly contaminated with creosote, comprised of a complex mixture of PAHs [42,43,44]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call