Abstract

We characterize the signature of piecewise continuously differentiable paths transformed by a polynomial map in terms of the signature of the original path. For this aim, we define recursively an algebra homomorphism between two shuffle algebras on words. This homomorphism does not depend on the path and behaves well with respect to composition and homogeneous maps. We also study this map as a half-shuffle homomorphism and give a generalization of our main theorem in terms of Zinbiel algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.