Abstract

Nearest neighbor bosons possessing only on-site interactions do not form on-site bound pairs in their quantum walk due to fermionization. We obtain signatures of nontrivial on-site pairing in the quantum walk of strongly interacting two component bosons in a one dimensional lattice. By considering an initial state with particles from different components located at the nearest-neighbor sites in the central region of the lattice, we show that in the dynamical evolution of the system, competing intra- and intercomponent on-site repulsion leads to the formation of on-site intercomponent bound states. We find that when the total number of particles is three, an intercomponent pair is favored in the limit of equal intra- and intercomponent interaction strengths. However, when two bosons from each species are considered, intercomponent pairs and trimer are favored depending on the ratios of the intra- and intercomponent interactions. In both cases, we find that the quantum walks exhibit a reentrant behavior as a function of intercomponent interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call