Abstract
We theoretically study the quantum transport through a Fano–Rashba interferometer with an embedded Majorana doublet which generates at one end of the DIII-class topological superconductor. It shows that the Rasbha spin–orbit interaction in the reference arm drives the apparent and terminal-dependence spin polarization of the electron tunneling and crossed Andreev reflection, accompanied by their opposite directions. However, spin degeneracy holds in the local Andreev reflection. Next once the Majorana doublet is replaced by the Andreev bound state, the spin-polarization properties of the Andreev reflections are interchanged. Therefore, the Fano–Rashba interferometer can be a promising candidate for differentiating the Majorana doublet from other bound states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.