Abstract

Flocking in d=2 is a genuine nonequilibrium phenomenon for which irreversibility is an essential ingredient. We study a class of minimal flocking models whose only source of irreversibility is self-propulsion and use the entropy production rate (EPR) to quantify the departure from equilibrium across their phase diagrams. The EPR is maximal in the vicinity of the order-disorder transition, where reshuffling of the interaction network is fast. We show that signatures of irreversibility come in the form of asymmetries in the steady-state distribution of the flock's microstates. These asymmetries occur as consequences of the time-reversal symmetry breaking in the considered self-propelled systems, independently of the interaction details. In the case of metric pairwise forces, they reduce to local asymmetries in the distribution of pairs of particles. This study suggests a possible use of pair asymmetries both to quantify the departure from equilibrium and to learn relevant information about aligning interaction potentials from data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.