Abstract

Laser control schemes for selective population inversion between molecular vibrational states have recently been proposed in the context of molecular cooling strategies using the so-called exceptional points (corresponding to a couple of coalescing resonances). All these proposals rest on the predictions of a purely adiabatic Floquet theory. In this work we compare the Floquet model with an exact wavepacket propagation taking into account the accompanying non-adiabatic effects. We search for signatures of a given exceptional point in the wavepacket dynamics and we discuss the role of the non-adiabatic interaction between the resonances blurring the ideal Floquet scheme. Moreover, we derive an optimal laser field to achieve, within acceptable compromise and rationalizing the unavoidable non-adiabatic contamination, the expected population inversions. The molecular system taken as an illustrative example is H.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call