Abstract

Collective motion-or flocking-is an emergent phenomena that underlies many biological processes of relevance, from cellular migrations to animal group movements. In this work, we derive scaling relations for the fluctuations of the mean direction of motion and for the static density structure factor (which encodes static density fluctuations) in the presence of a homogeneous, small external field. This allows us to formulate two different and complementary criteria capable of detecting instances of directed motion exclusively from easily measurable dynamical and static signatures of the collective dynamics, without the need to detect correlations with environmental cues. The static one is informative in large enough systems, while the dynamical one requires large observation times to be effective. We believe these criteria may prove useful to detect or confirm the directed nature of collective motion in in vivo experimental observations, which are typically conducted in complex and not fully controlled environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.