Abstract

Monitoring the loss of genetic diversity in wild populations after a bottleneck event is a priority in conservation and management plans. Here, we used diverse molecular markers to search for signatures of demographic bottlenecks in two wolf populations; an isolated population from the Iberian Peninsula and a non-isolated population from European Russia. Autosomal, mtDNA and Y-chromosomal diversity and the effective population size (Ne) were significantly lower in the Iberian population. Neutrality tests using mtDNA sequences, such as R2, Fu and Li’s F*, Tajima’s D and Fu’s Fs, were positively significant in the Iberian population, suggesting a population decline, but were not significant for the Russian population, likely due to its larger effective population size. However, three tests using autosomal data confirmed the occurrence of the genetic bottleneck in both populations. The M-ratio test was the only one providing significant results for both populations. Given the lack of consistency among the different tests, we recommend using multiple approaches to investigate possible past bottlenecks. The small effective population size (about 50) in the Iberian Peninsula compared to the presumed extant population size could indicate that the bottleneck was more powerful than initially suspected or an overestimation of the current population. The risks associated with small effective population sizes suggest that the genetic change in this population should be closely monitored in the future. On the other hand, the relatively small effective population size for Russian wolves (a few hundred individuals) could indicate some fragmentation, contrary to what is commonly assumed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call