Abstract

One interpretation of the unexplained signature observed in the PVLAS experiment invokes a new axionlike particle (ALP) with a two-photon vertex, allowing for photon-ALP oscillations in the presence of magnetic fields. In the range of masses and couplings suggested by PVLAS, the same effect would lead to a peculiar dimming of high-energy photon sources. For typical parameters of the turbulent magnetic field in the galaxy, the effect sets in at ${E}_{\ensuremath{\gamma}}\ensuremath{\gtrsim}10\text{ }\text{ }\mathrm{TeV}$, providing an ALP signature in the spectra of TeV gamma sources that can be probed with Cherenkov telescopes. A dedicated search will be strongly motivated if the ongoing photon regeneration experiments confirm the PVLAS particle interpretation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.