Abstract

Understanding the ecological and evolutionary processes that drive host-pathogen interactions is critical for combating epidemics and conserving species. The Varroa destructor mite and deformed wing virus (DWV) are two synergistic threats to Western honeybee (Apis mellifera) populations across the globe. Distinct honeybee populations have been found to self-sustain despite Varroa infestations, including colonies within the Arnot Forest outside Ithaca, NY, USA. We hypothesized that in these bee populations, DWV has been selected to produce an avirulent infection phenotype, allowing for the persistence of both host and disease-causing agents. To investigate this, we assessed the titre of viruses in bees from the Arnot Forest and managed apiaries, and assessed genomic variation and virulence differences between DWV isolates. Across groups, we found viral abundance was similar, but DWV genotypes were distinct. We also found that infections with isolates from the Arnot Forest resulted in higher survival and lower rates of symptomatic deformed wings, compared to analogous isolates from managed colonies, providing preliminary evidence to support the hypothesis of adaptive decreased viral virulence. Overall, this multi-level investigation of virus genotype and phenotype indicates that host ecological context can be a significant driver of viral evolution and host-pathogen interactions in honeybees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.