Abstract

Optical frequency combs based on mode-locked lasers have revolutionized many areas of science and technology, such as precision metrology, optical frequency synthesis, and telecommunications. In recent years, a particular kind of frequency comb has been observed in edge-emitting semiconductor lasers where the phase difference between longitudinal laser modes is fixed but not zero. This results in a linearly chirped output in the time domain with nearly constant intensity. Here, by using coherent beatnote spectroscopy, we show that such a comb regime can also exist in vertical-external-cavity surface-emitting lasers, as evidenced for a specific part of the laser spectrum. Our findings may not only lead to a better understanding of the physics of frequency-modulated combs but also enable comb applications with high optical power per comb line and flexible emission wavelengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call