Abstract
Modern medical documentation appears most often in an online form which requires some digital methods to ensure its confidentiality, integrity and authenticity. The document authenticity may be secured with the use of a signature. A classical handwritten signature is directly related to its owner by his/her psychomotor character traits. Such a signature is also connected with the material it is written on, and a writing tool. Because of these properties, a handwritten signature reflects certain close material bonds between the owner and the document. In case of modern digital signatures, the document authentication has a mathematical nature. The verification of the authenticity becomes the verification of a key instead of a human. Since 1994 it has been known that classical digital signature algorithms may not be safe because of the Shor’s factorization algorithm. To implement the modern authenticity protection of medical data, some new types of algorithms should be used. One of the groups of such algorithms is based on the quantum computations. In this paper, the analysis of the current knowledge status of Quantum Digital Signature protocols, with its basic principles, phases and common elements such as transmission, comparison and encryption, was outlined. Some of the most promising protocols for signing digital medical documentation, that fulfill the requirements for QDS, were also briefly described. We showed that, a QDS protocol with QKD components requires the equipment similar to the equipment used for a QKD, for its implementation, which is already commercially available. If it is properly implemented, it provides the shortest lifetime of qubits in comparison to other protocols. It can be used not only to sign classical messages but probably it could be well adopted to implement unconditionally safe protection of medical documentation in the nearest future, as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.