Abstract
The positronium molecule (Ps$_2$) has not been experimentally observed yet because its tiny (4.5 eV) binding energy cannot be detected when the molecule annihilates by emitting two photons with energy of 0.51 MeV each. It is shown in this paper that the electric dipole transition between the recently found L=1 excited-state and the L=0 ground-state with its characteristic photon energy of 4.94 eV is a clear signature of the existence of the positronium molecule and the possibility of its experimental observation is realistic. The probability of this transition is about 17 % of the total decay rate. An other Coulomb four-body system containing positron, HPs (the positronium hydride or hydrogen positride), is also included for comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.