Abstract

With the new generation of space telescopes such as the James Webb Space Telescope (JWST), it is possible to better characterize the atmospheres of exoplanets. The atmospheres of Hot and ultra-hot Jupiters are highly heterogeneous and asymmetrical. The difference between the temperatures on the day and night sides is especially extreme in the case of ultra-hot Jupiters. We introduce a new tool to compute synthetic light curves from 3D general circulation model (GCM) simulations, developed in the Pytmosph3R framework. We show how rotation induces a variation in the flux during the transit that is a source of information on the chemical and thermal distribution of the atmosphere. We find that the day–night gradient linked to ultra-hot Jupiters has an effect close to stellar limb darkening, but opposite to tidal deformation. We confirm the impact of the atmospheric and chemical distribution on variations in the central transit time, though the variations found are smaller than those in available observational data, which could indicate that the east–west asymmetries are underestimated, due to the chemistry or clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.