Abstract
Non-photospheric-radius-expansion (non-PRE) double-peaked bursts may be explained in terms of spreading (and temporary stalling) of thermonuclear flames on the neutron star surface, as we argued in a previous study of a burst assuming polar ignition. Here we analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of such a burst (but with a considerably different intensity profile from the previous one) from the low mass X-ray binary (LMXB) system 4U 1636-536, and show that this model can qualitatively explain the observed burst profile and spectral evolution, if we assume an off-polar, but high-latitude ignition, and burning front stalling at a higher latitude compared to that for the previous burst. The off-polar ignition can account for the millisecond period brightness oscillations detected from this burst. This is the first time oscillations have been seen from such a burst. Our model can qualitatively explain the oscillation amplitude measured during the first (weaker) peak, and the absence of oscillations during the second peak. The higher latitude front stalling facilitates the first clear detection of a signature of this stalling, which is the primary result of this work, and may be useful for understanding thermonuclear flame spreading on neutron stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.