Abstract

This paper is focused on the signature of thermal-assisted cluster disruption while analyzing the inverse alternating current (AC) susceptibility (1/χ) versus temperature (T) curves recorded at lower AC frequencies (f), below 300 Hz. A commercial oil-based magnetic fluid (MF) sample was used in the experiments to investigate the critical temperature (T*) that characterizes the thermal disruption of aggregates suspended within the MF sample. T* was found to reduce as f increased within the frequency range of our investigation (63–263 Hz). Furthermore, T* was found to scale with the square of the applied AC frequency. Both theoretical and experimental evidences support that the excitation field frequency (f) dependence of the critical temperature (T*) is well described by T*(f)=T*(0)−Af21+Bf2. The model is based on energy absorption of magnetic nanoparticles in an AC magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.