Abstract

Gradient direction models for corners of prescribed acuteness, leg length, and leg thickness are constructed by generating fields of unit vectors emanating from leg pixels that point normal to the edges. A novel FFT-based algorithm that quickly matches models of corners at all possible positions and orientations in the image to fields of gradient directions for image pixels is described. The signal strength of a corner is discussed in terms of the number of pixels along the edges of a corner in an image, while noise is characterized by the coherence of gradient directions along those edges. The detection-false alarm rate behavior of our corner detector is evaluated empirically by manually constructing maps of corner locations in typical overhead images, and then generating different ROC curves for matches to models of corners with different leg lengths and thicknesses. We then demonstrate how corners found with our detector can be used to quickly and automatically find families of polygons of arbitrary position, size and orientation in overhead images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.