Abstract

BackgroundThe pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonizations, can be inferred. Drosophila virilis is a cosmopolitan species belonging to the virilis group, where divergence times between different phylads go back to the early Miocene. We analysed mitochondrial DNA sequence variation among 35 Drosophila virilis strains covering the species' range in order to detect demographic events that could be used to understand the present characteristics of the species, as well as its differences from other members of the group.ResultsDrosophila virilis showed very low nucleotide diversity with haplotypes distributed in a star-like network, consistent with a recent world-wide exponential expansion possibly associated either with domestication or post-glacial colonization. All analyses point towards a rapid population expansion. Coalescence models support this interpretation. The central haplotype in the network, which could be interpreted as ancestral, is widely distributed and gives no information about the geographical origin of the population expansion. The species showed no geographic structure in the distribution of mitochondrial haplotypes, in contrast to results of a recent microsatellite-based analysis.ConclusionThe lack of geographic structure and the star-like topology depicted by the D. virilis haplotypes indicate a pattern of global demographic expansion, probably related to human movements, although this interpretation cannot be distinguished from a selective sweep in the mitochondrial DNA until nuclear sequence data become available. The particular behavioural traits of this species, including weak species-discrimination and intraspecific mate choice exercised by the females, can be understood from this perspective.

Highlights

  • The pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history

  • The lack of geographic structure and the star-like topology depicted by the D. virilis haplotypes indicate a pattern of global demographic expansion, probably related to human movements, this interpretation cannot be distinguished from a selective sweep in the mitochondrial DNA until nuclear sequence data become available

  • We report an analysis of the demographic history of D. virilis using mitochondrial DNA sequence data, in order to provide an historical framework for evolutionary studies on life history and behavioural traits of the species and comparisons with other species in the group, especially D. montana, the most divergent species within the virilis group

Read more

Summary

Introduction

The pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history. After an explosion of studies using mitochondrial DNA for phylogeographic inference, there is nowadays rising concern about making inferences based in this single molecule, due to problems related with recombination, effective population size, mutation rates, introgression and neutrality [10,11]. These problems influence the construction of species-level phylogenies most profoundly [e.g. They may confound estimations of demographic history and coalescence times within species If these drawbacks are taken into account when examining the evolutionary history of a taxon, mitochondrial DNA surveys can provide efficient means of detecting gene flow, levels of reproductive isolation, species boundaries and historical patterns of population structure [13]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.