Abstract

A brain–computer interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans have used scalp-recorded electroencephalography (EEG). We have recently demonstrated that signals from intracranial electrocorticography (ECoG) and stereotactic depth electrodes (SDE) in the hippocampus can be used to control a BCI P300 Speller paradigm. We report a case in which stereotactic depth electrodes positioned in the ventricle were able to obtain viable signals for a BCI. Our results demonstrate that event-related potentials from intraventricular electrodes can be used to reliably control the P300 Speller BCI paradigm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call