Abstract

Techniques to improve the accuracy of the finite-difference time-domain (FDTD) solutions employing sinusoidal excitations are developed. The FDTD computational domain is considered as a sampled system and analyzed with respect to the aliasing error using the Nyquist sampling theorem. After a careful examination of how the high-frequency components in the excitation cause sinusoidal steady-state errors in the FDTD solutions, the use of smoothing windows and digital low-pass filters is suggested to reduce the error. The reduction in the error is demonstrated for various cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call