Abstract
The cereal aleurone is widely used as a model system to study hormonal signalling. Abscisic acid (ABA) and gibberellins (GAs) elicit distinct responses in aleurone cells, ranging from those occurring within minutes of hormone addition to those that require several hours or days to complete. Programmed cell death is an example of a response in aleurone layers that is hormonally regulated. GAs promote cell death and cells in intact aleurone layers begin to die 24h after GA treatment, whereas cell death of aleurone protoplasts begins 4d after GA treatment. ABA prevents aleurone cell death and addition of ABA to cells pretreated with GA can delay cell death. Aleurone cells do not follow the apoptotic route of programmed cell death. Cells treated with GA, but not ABA, develop large, acidic vacuoles containing a spectrum of hydrolases typical of lytic compartments. Enzymes that metabolize reactive oxygen species are also present in aleurone cells, but ascorbate peroxidase, catalase and superoxide dismutase become less abundant after treatment with GA; activity of these enzymes increases or remains unchanged in ABA-treated cells. We propose a model whereby reactive oxygen species accumulate in GA-treated cells and lead to peroxidation of membrane lipids and plasma membrane rupture. ABBREVIATIONS: RO, reactive oxygen species; HR, hypersensitive response; PSV, protein storage vacuole; PCD, programmed cell death; CAT, catalase; SOD, superoxide dismutase; APX, ascorbate peroxidase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.