Abstract

Human IFN regulatory factor-5 (IRF-5) is a candidate tumor suppressor gene that mediates cell arrest, apoptosis, and immune activation. Here we show that ectopic IRF-5 sensitizes p53-proficient and p53-deficient colon cancer cells to DNA damage-induced apoptosis. The combination IFN-beta and irinotecan (CPT-11) cooperatively inhibits cell growth and IRF-5 synergizes with it to further promote apoptosis. The synergism is due to IRF-5 signaling since a striking defect in apoptosis and cell death was observed in IRF-5-deficient cells, which correlated well with a reduction in DNA damage-induced cellular events. Components of this IRF-5 signaling pathway are investigated including a mechanism for DNA damage-induced IRF-5 activation. Thus, IRF-5-regulated pathways may serve as a target for cancer therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call