Abstract

Low-density lipoprotein (LDL) and lysophosphatidic acid (LPA), one of the lipid components of lipoprotein, induced the DNA synthesis of coronary artery smooth muscle cells (CASMCs). The LDL- and LPA-induced DNA synthesis was markedly inhibited by the LPA receptor antagonist Ki16425, pertussis toxin, small interfering RNAs targeted for LPA 1 receptors, and a potent calcineurin inhibitor cyclosporine A. It has been reported that LDL and LPA induced a migration response in a manner sensitive to Ki16425, pertussis toxin, and a LPA 1 receptor-specific small interfering RNA. However, cyclosporine A was ineffective in inhibiting the migration response. Instead, an epidermal growth factor (EGF) receptor tyrosine kinase inhibitor markedly suppressed the migration response to LDL and LPA without having any significant effect on DNA synthesis. Thus, the LDL-induced stimulation of DNA synthesis and migration in CASMCs is mediated by its component LPA through LPA 1 receptors and G i/o-proteins. Ca 2+/calcineurin pathways and transactivation of EGF receptors mediate LPA 1-receptor-induced DNA synthesis and migration, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.