Abstract
Parkinson’s disease (PD) is a common chronic neurodegenerative disorder primarily caused by death of dopaminergic neurons in the substantia nigra pars compacta (SN). Human neuroblastoma SH-SY5Y cells have been broadly utilized in studies of mechanisms of the pathogenesis underlying MPP+-induced PD mimics. However, the pathways impacted in MPP+-treated SH-SY5Y cells have not been examined at genome-wide level. Here, we examined genome-wide response of MPP+-treated SH-SY5Y cells with whole genome expression array including 47,231 probes and identified 169 genes that were significantly differentially expressed in a significance analysis of micro-arrays. Gene ontology (GO) terms such as GO:0051900 (regulation of mitochondrial depolarization), GO:0008637 (apoptotic mitochondrial changes), GO:0090090 (negative regulation of canonical Wnt receptor signaling pathway), and GO:0009968 (negative regulation of signal transduction) were significantly overrepresented in a differentially expressed genes (DEGs) analysis. The DEG information and their fold changes in expression were used to identify the pathways impacted. Five pathways, including systemic lupus erythematosus, alcoholism, prion diseases, the Wnt signaling pathway, and axon guidance had a significant impact at a threshold of P G = 0.05. Our results suggest that MPP+ toxicity of SH-SY5Y cells might be related to transcriptional dysregulation by a nucleosome structural defect, endoplasmic reticulum stress, and inhibited canonical Wnt signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.