Abstract

Our previous study demonstrated that mitochondria-derived reactive oxygen species (ROS) generation is involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in Bombyx mori prothoracic glands (PGs). In the present study, we further investigated the mechanism of ROS production and the signaling pathway mediated by ROS. PTTH-stimulated ROS production was markedly attenuated in a Ca2+-free medium. The phospholipase C (PLC) inhibitor, U73122, greatly inhibited PTTH-stimulated ROS production, indicating the involvement of Ca2+ and PLC. When the PGs were treated with agents that directly elevate the intracellular Ca2+ concentration (either A23187, or the protein kinase C (PKC) activator, phorbol 12-myristate acetate (PMA)), a great increase in ROS production was observed. We further investigated the action mechanism of PTTH-stimulated ROS signaling. Results showed that in the presence of either an antioxidant (N-acetylcysteine, NAC), or the mitochondrial oxidative phosphorylation inhibitors (rotenone, antimycin A, the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), and diphenyleneiodonium (DPI)), PTTH-regulated phosphorylation of ERK, 4E-BP, and AMPK was blocked. Treatment with 1mM of H2O2 alone activated the phosphorylation of ERK and 4E-BP, and inhibited AMPK phosphorylation. From these results, we conclude that PTTH-stimulated ROS signaling is Ca2+- and PLC-dependent and that ROS signaling appears to lie upstream of the phosphorylation of ERK, 4E-BP, and AMPK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.