Abstract

Reactive oxygen species (ROS) are known to serve as a second messenger in the intracellular signal transduction pathway for a variety of cellular processes, including inflammation, cell cycle progression, apoptosis, aging and cancer. Recently, ROS have been found to be associated with tumor metastasis involving the processes of tumor cell migration, invasion and angiogenesis. Emerging evidence also suggests that Epithelial-Mesenchymal Transition (EMT), a process that is reminiscent of cancer stem cells, is an important step toward tumor invasion and metastasis, and intimately involved in de novo and acquired drug resistance. In light of recent advances, we are summarizing the role of ROS in EMT by cataloging how its deregulation is involved in EMT and tumor aggressiveness. Further attempts have been made to summarize the role of several chemopreventive agents that could be useful for targeted inactivation of ROS, suggesting that many natural agents could be useful for the reversal of EMT, which would become a novel approach for the prevention of tumor progression and/or treatment of human malignancies especially by killing EMT-type cells that shares similar characteristics with cancer stem cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.