Abstract

Microbial communities such as swarms or biofilms often form at the interfaces of solid substrates and open fluid flows. At the same time, in laboratory environments these communities are commonly studied using microfluidic devices with media flows and open boundaries. Extracellular signaling within these communities is therefore subject to different constraints than signaling within classic, closed-boundary systems such as developing embryos or tissues, yet is understudied by comparison. Here, we use mathematical modeling to show how advective-diffusive boundary flows and population geometry impact cell-cell signaling in monolayer microbial communities. We reveal conditions where the intercellular signaling lengthscale depends solely on the population geometry and not on diffusion or degradation, as commonly expected. We further demonstrate that diffusive coupling with the boundary flow can produce signal gradients within an isogenic population, even when there is no flow within the population. We use our theory to provide new insights into the signaling mechanisms of published experimental results, and we make several experimentally verifiable predictions. Our research highlights the importance of carefully evaluating boundary dynamics and environmental geometry when modeling microbial cell-cell signaling and informs the study of cell behaviors in both natural and synthetic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.