Abstract
Plastid-nucleus genome coordination is crucial for plastid activity, but the mechanisms remain unclear. By treating Arabidopsis plants with the organellar genome-damaging agent ciprofloxacin, we found that plastid genome instability can alter endoreplication and the cell cycle. Similar results are observed in the plastid genome instability mutants of reca1why1why3. Cell division and embryo development are disturbed in the reca1why1why3 mutant. Notably, SMR5 and SMR7 genes, which encode cell-cycle kinase inhibitors, are upregulated in plastid genome instability plants, and the mutation of SMR7 can restore the endoreplication and growth phenotype of reca1why1why3 plants. Furthermore, we establish that the DNA damage response transcription factor SOG1 mediates the alteration of endoreplication and cell cycle triggered by plastid genome instability. Finally, we demonstrate that reactive oxygen species produced in plastids are important for plastid-nucleus genome coordination. Our findings uncover a molecular mechanism for the coordination of plastid and nuclear genomes during plant growth and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.