Abstract
Hidden nonlocality is the phenomenon that entangled states can be local in the standard Bell scenario but display nonlocality after local filtering. However, there exist entangled states for which all measurement statistics can be described via a local hidden variable model even after local filtering. In this work we consider the scenario that measurement outcomes and settings of Alice can influence measurements of Bob in subsequent time steps (and vice versa), however, there is no signaling among them for measurements at the same time step. We show that in this scenario states that only display local statistics after local filtering remain local even when considering the complete statistics of arbitrary sequences and therefore no advantage can be gained by performing longer sequences in this scenario. We first determine the extreme points of the polytope defined by the no-signaling conditions within the same time step and the arrow-of-time constraints. Based on these results we introduce a notion of locality and provide a complete representation of the corresponding local polytope in terms of inequalities in the simplest scenario. These results imply that in the scenario considered here there is no nonlocality beyond hidden nonlocality. We further propose a device-dependent Schmidt number witness and we compare our finding to known local models in the sequential scenario.
Highlights
Hidden nonlocality is the phenomenon that entangled states can be local in the standard Bell scenario but display nonlocality after local filtering
We show that in this scenario states that only display local statistics after local filtering remain local even when considering the complete statistics of arbitrary sequences and no advantage can be gained by performing longer sequences in this scenario
The converse is not true.There exist entangled states that do not violate any Bell inequality [15, 16], i.e., measurements always result in local correlations and entanglement and Bell nonlocality are two distinct features
Summary
Hidden nonlocality is the phenomenon that entangled states can be local in the standard Bell scenario but display nonlocality after local filtering. The polytopes.— In the following we characterize the spatio-temporal correlation polytope in the simplest scenario P22,,22 by providing its extremal points and a set of inequalities completely describing the corresponding local polytope. Any that is build solely from extreme points of the non-sequential local polytope can be reached (without the need of entanglement) if one allows the preparation of an arbitrary separable state at each time step which can depend on the setting and outcomes of previous time steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.