Abstract
Imaging Atmospheric Cherenkov Telescopes (IACTs) detect very-high-energy gamma rays from ground level by capturing the Cherenkov light of the induced particle showers. Convolutional neural networks (CNNs) can be trained on IACT camera images of such events to differentiate the signal from the background and to reconstruct the energy of the initial gamma ray. Pattern spectra provide a 2-dimensional histogram of the sizes and shapes of features comprising an image and they can be used as an input for a CNN to significantly reduce the computational power required to train it. In this work, we generate pattern spectra from simulated gamma-ray and proton images to train a CNN for signal-background separation and energy reconstruction for the Small-Sized Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). A comparison of our results with a CNN directly trained on CTA images shows that the pattern spectra-based analysis is about a factor of three less computationally expensive but not able to compete with the performance of an CTA image-based analysis. Thus, we conclude that the CTA images must be comprised of additional information not represented by the pattern spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.