Abstract

Protein synthesis rates were maximally stimulated in human lymphocytes by ionomycin and the phorbol ester PMA (I+P), which promotes proliferation, whereas PMA alone, which does not promote proliferation, stimulated protein synthesis to a lesser degree. Three translation-associated activities, eIF4E phosphorylation, eIF2B activity and 4E-BP1 phosphorylation also increased with stimulation by I+P and PMA, but only 4E-BP1 phosphorylation was differentially stimulated by these conditions. Correspondingly, signaling pathways activated in T cells were probed for their connection to these activities. Immunosuppressants FK506 and rapamycin partially blocked the protein synthesis rate increases by I+P stimulation. FK506 had less of an inhibitory effect with PMA stimulation suggesting that its mechanism mostly affected ionomycin-activated signals. I+P and PMA equally stimulated phosphorylation of ERK1/2, but I+P more strongly stimulated Akt, and p70 S6K phosphorylation. An inhibitor that blocks ERK1/2 phosphorylation only slightly reduced protein synthesis rates stimulated by I+P or PMA, but greatly reduced eIF4E phosphorylation and eIF2B activity. In contrast, inhibitors of the PI-3 kinase and mTOR pathways strongly blocked early protein synthesis rate stimulated by I+P and PMA and also blocked 4E-BP1 phosphorylation and release of eIF4E suggesting that these pathways regulate protein synthesis activities, which are important for proliferation in T cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.