Abstract

The final number of Sertoli cells reached during the proliferative periods determines sperm production capacity in adulthood. It is well known that FSH is the major Sertoli cell mitogen; however, little is known about the signal transduction pathways that regulate the proliferation of Sertoli cells. The hypothesis of this investigation was that FSH regulates proliferation through a PI3K/Akt/mTORC1 pathway, and additionally, AMPK-dependent mechanisms counteract FSH proliferative effects. The present study was performed in 8-day-old rat Sertoli cell cultures. The results presented herein show that FSH, in addition to increasing p-Akt, p-mTOR, and p-p70S6K levels, increases p-PRAS40 levels, probably contributing to improving mTORC1 signaling. Furthermore, the decrease in FSH-stimulated p-Akt, p-mTOR, p-p70S6K, and p-PRAS40 levels in the presence of wortmannin emphasizes the participation of PI3K in FSH signaling. Additionally, the inhibition of FSH-stimulated Sertoli cell proliferation by the effect of wortmannin and rapamycin point to the relevance of the PI3K/Akt/mTORC1 signaling pathway in the mitotic activity of FSH. On the other hand, by activating AMPK, several interesting observations were made. Activation of AMPK produced an increase in Raptor phosphorylation, a decrease in p70S6K phosphorylation, and a decrease in FSH-stimulated Sertoli cell proliferation. The decrease in FSH-stimulated cell proliferation was accompanied by an increased expression of the cyclin-dependent kinase inhibitors (CDKIs) p19INK4d, p21Cip1, and p27Kip1. In summary, it is concluded that FSH regulates Sertoli cell proliferation with the participation of a PI3K/Akt/mTORC1 pathway and that AMPK activation may be involved in the detention of proliferation by, at least in part, a decrease in mTORC1 signaling and an increase in CDKI expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call