Abstract
In a previous report, we showed that increased activation of Akt, a downstream effector of phosphoinositide 3-kinase (PI3K) together with decreased activation of extracellular-signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase (MAPK) family, predicted poor clinical outcome in prostate cancer (Kreisberg et al. 2004 Cancer Research 64 5232-5236). We now show that Akt activation, but not ERK activation, is correlated with proliferation in human prostate tumors as estimated by the expression of the cell proliferation antigen Ki67. We verified these results in vitro, using the androgen-dependent prostate cancer cell line LNCaP and its androgen-independent clone C4-2 as models of prostate cancer of good and poor clinical outcome, respectively. C4-2 cells expressed higher Akt activation, lower ERK activation and increased proliferation compared with LNCaP cells, similar to cases of poor clinical outcome. The PI3K inhibitor LY294002, but not the MAPK/ERK kinase inhibitor PD98059, induced growth arrest in both cell lines. Transient transfection with constitutively active Akt increased proliferation while dominant negative Akt decreased it, thus showing that Akt plays an important role in prostate cancer proliferation. Akt regulates the expression and activation of the androgen receptor. Androgen receptor inhibition with Casodex induced growth arrest in LNCaP cells, but not in C4-2 cells. Another PI3K downstream effector, p70 S6 kinase, requires prior phosphorylation by mammalian target of rapamycin (mTOR) for complete activation. Activation of p70 S6 kinase was higher in C4-2 compared with LNCaP cells. Rapamycin, an mTOR inhibitor, had a growth-inhibitory effect in C4-2 cells, but not in LNCaP cells. Our data suggest a shift from a Casodex-sensitive proliferation pathway in LNCaP cells to a rapamycin-sensitive pathway in C4-2 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.