Abstract

Multiple drug resistance (MDR), defined as the ability of tumour cells to survive exposure to many chemotherapeutic agents, is a major cause of treatment failure in human cancers. The membrane transporter P-glycoprotein (Pgp, encoded by the ABCB1 [adenosine triphosphate-binding cassette, subfamily B, member 1] gene) is the main mechanism for decreased intracellular drug accumulation in human MDR cancer. ABCB1/Pgp-mediated MDR involves several signal transduction pathways and transcription factors. Activation of these signal transduction pathways influences the prognosis of MDR human cancer. Signalling pathways involved in ABCB1/Pgp-mediated MDR include the mitogen-activated protein kinase (MAPK), c-Jun NH(2)-terminal kinase (JNK), p38, cyclic adenosine monophosphate-dependent protein kinase, phosphatidylino sitol 3-kinase and protein kinase C signalling pathways. This review summarizes the biological characteristics, target points and signalling cascade mediators of these pathways. Drugs targeted against these pathways may provide new therapies for treatment of ABCB1/Pgp-mediated MDR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.