Abstract

A chalcone analogue, (E)-3-(phenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (DMU 101), was synthesized using classic base catalysis and Claisen-Schmidt condensation, and then screened for its antidiabetic properties. The compound's effects on glucose and lipid metabolism were assayed in rats that were treated acutely and for a short time to elucidate its mechanism of action, evaluating glucose tolerance and lactate dehydrogenase activity in response to chalcone analogue administration. The chalcone's in vitro and ex vivo effects on glycogen, glucose, lipid and lipolysis were also investigated, as well as the mechanism by which it induces 45Ca2+ influx-mediated insulin secretion. The analogue (10 mg/kg) diminished glycemia, without inducing acute cell damage, increased glycogen content in the skeletal muscle and reduced serum triacylglycerol and total cholesterol, but did not alter high-density lipoprotein or low-density lipoprotein. Chalcone (10 μM) stimulated glucose uptake in the soleus muscle and did not modulate in vitro or ex vivo lipolysis. This analogue also increased insulin secretion by triggering calcium influx and blocking ATP-sensitive K+ channels and voltage-dependent calcium channels. However, it also modulated stored calcium via sarco/endoplasmic reticulum calcium ATPase (SERCA) and ryanodine receptor (RYR) activity. These findings indicate that this chalcone may induce cellular repolarization via a mechanism mediated by calcium-dependent potassium channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call