Abstract
Molecular dynamics simulation techniques together with time-dependent density functional theory calculations have been used to investigate the effect of photon absorption by a 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. The calculations suggest that the protein not only modifies the absorption spectrum of the chromophore but also regulates the subsequent isomerization of the chromophore by stabilizing the isomerization transition state. Although signaling from PYP is thought to involve partial unfolding of the protein, the mechanical effects accompanying isomerization do not appear to directly destabilize the protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.