Abstract

The signal transduction and amplification in a Neurospora circadian clock system is studied by using the mechanism of internal signal stochastic resonance (ISSR). Two cases have been investigated: the case of no correlations between multiplicative and additive colored noises and the case of correlations between two noises. The results show that, in both cases, the noise-induced circadian oscillations can be transduced with the phenomenon of internal signal stochastic resonance (ISSR). However, the correlation time and intensity of an additive colored noise play different roles for the ISSR, driven by multiplicative colored noise, while the correlation time and intensity of multiplicative colored noise hardly influence the ISSR driven by additive colored noise. In addition, the ISSR can be amplified or suppressed at an appropriate range of the correlation intensity between two colored noises. The fundamental frequency of noise-induced circadian oscillations is hardly shifted with the increment of the intensity and correlation time of colored noises, which implies that the Neurospora system could be resistant to colored noises, exhibit strong vitality and sustain intrinsic circadian rhythms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.