Abstract

The use of Activated Carboxylic Acids (ACAs) allows the time-controlled operation of dissipative chemical systems based on the acid-base reaction by providing both the stimulus that temporarily drives a physicochemical change and, subsequently, the counter-stimulus with a single reagent addition. However, their application is inherently limited to acid-sensitive systems. To overcome this limitation, we herein develop a straightforward device for the transduction of the acid-base stimuli delivered by an ACA into a voltage signal that, in turn, is used to control voltage-sensitive circuits that are not pH-responsive by themselves. The signal transductor can be easily assembled from common laboratory equipment and employs aqueous solutions of readily available chemicals. Furthermore, the operator can simply and intuitively tune the amplitude of the voltage signal, as well as its duration and offset by varying the concentration of the chemical species involved in the transduction process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call