Abstract

Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2-like domains, as well as a YXXQ motif in its C-terminal region. Our previous studies revealed that STAP-2 regulates integrin-mediated T cell adhesion. In the present study, we find that STAP-2 expression affects Jurkat T cell migration after stromal cell-derived factor-1alpha (SDF-1alpha)-treatment. Furthermore, STAP-2-deficient T cells exhibit reduced cell migration after SDF-1alpha-treatment. Importantly, overexpression of STAP-2 in Jurkat T cells induces activation of small guanine triphosphatases, such as Rac1 and Cdc42. Regarding the mechanism for this effect, we found that STAP-2 associates with Vav1, the guanine-nucleotide exchanging factor for Rac1, and enhances downstream Vav1/Rac1 signaling. These results reveal a novel STAP-2-mediated mechanism for the regulation of SDF-1alpha-induced chemotaxis of T cells via activation of Vav1/Rac1 signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.