Abstract

Fibroblast growth factor receptors (FGFR) are cell surface tyrosine kinases that function in cell proliferation and differentiation. Aberrant FGFR signaling occurs in diverse cancers due to gene amplification, but the associated oncogenic mechanisms are poorly understood. Using a proteomics approach, we identified signal transducers and activators of transcription-3 (STAT3) as a receptor-binding partner that is mediated by Tyr(677) phosphorylation on FGFR. Binding to activated FGFR was essential for subsequent tyrosine phosphorylation and nuclear translocation of STAT3, along with activation of its downstream target genes. Tyrosine phosphorylation of STAT3 was also dependent on concomitant FGFR-dependent activity of SRC and JAK kinases. Lastly, tyrosine (but not serine) phosphorylation of STAT3 required amplified FGFR protein expression, generated either by enforced overexpression or as associated with gene amplification in cancer cells. Our findings show that amplified FGFR expression engages the STAT3 pathway, and they suggest therapeutic strategies to attack FGFR-overexpressing cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.