Abstract

We investigate, both theoretically and experimentally, the signal-to-noise ratio (SNR) of modulated amplified spontaneous emission (ASE) transmitted over dispersive fiber. We observe two significant effects; firstly, the signal-to-excess-noise ratio (SNR/sub ex/) varies across the pulse reaching its maximum value near the peak of the detected signal; and secondly, this maximum value decreases with increasing fiber dispersion-induced pulse broadening. Accurate calculation of transmission performance of high bit-rate optical communication systems employing ASE sources, such as spectrum slicing, requires inclusion of these effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.