Abstract
In this paper, a genetic least mean square (GLMS) method is proposed to improve the signal-to-noise ratio (SNR) of acoustic signal reconstruction in a phase-sensitive optical time-domain reflectometry system. The raw demodulated signal is processed via applying the least mean square criterion. The SNR of the processed signal was calculated and served as the objective function in the fitness evaluation procedure. The genetic operations of the population selection, crossover, and mutation are sequentially performed and repeated until the suspensive condition is reached. Through multiple iterations, the GLMS method continuously optimized the population to find the optimal solution. Experimental results demonstrate that the SNR is substantially improved by 14.37–23.60 dB in the monotonic scale audio signal test from 60 to 1000 Hz. Furthermore, the improvement of the phase reconstruction of a human voice audio signal is also validated by exploiting the proposed GLMS method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.