Abstract
When electromyography (EMG) signals are collected from muscles in the torso, they can be perturbed by the electrocardiography (ECG) signals from heart activity. In this paper, we present a novel signal-to-noise ratio (SNR) estimate for an EMG signal contaminated by an ECG signal. We use six features that are popular in assessing EMG signals, namely skewness, kurtosis, mean average value, waveform length, zero crossing and mean frequency. The features were calculated from the raw EMG signals and the detail coefficients of the discrete stationary wavelet transform. Then, these features are used as inputs to a neural network that outputs the estimate of SNR. While we used simulated EMG signals artificially contaminated with simulated ECG signals as the training data, the testing was done with simulated EMG signals artificially contaminated with real ECG signals. The results showed that the waveform length determined with raw EMG signals was the best feature for estimating SNR. It gave the highest average correlation coefficient of 0.9663. These results suggest that the waveform length could be deployed not only in EMG recognition systems but also in EMG signal quality measurements when the EMG signals are contaminated by ECG interference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.