Abstract

AbstractThe signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrometer by the optimization of optical structure and a noise reduction method. Concerning its optical structure, the Raman spectrometer is increasing the intensity by adding an off‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE) is proposed to further advance the SNR in Raman spectra without manual intervention. The results indicate the performance of the compact Raman spectrometer could increase to a certain extent by testing with 785 nm laser and Ne/Ar source. Besides, by using CDAE to deal with contaminated Raman spectra, a higher SNR is obtained. The results demonstrate that the improvement of the hardware and algorithm is effective for removing the noisy Raman signal and achieving higher SNR. This result may be helpful in further improving the performance of integrated Raman spectrometers and research on miniaturized instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.