Abstract

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been widely used in the quantitative analysis of drugs. The ubiquitous concomitant drug scenario in the clinic has spawned a large number of co-analyses based on this technique. However, signal suppression caused by concomitant drugs during electrospray ionization may affect the quantification accuracy of analytes, which has not received enough attention. In this study, metformin (MET) and glyburide (GLY) were co-eluted by the conventional optimization of chromatographic conditions to illustrate the effect of signal suppression caused by the combined drugs on the quantitative analysis. The response of MET was not affected by GLY over the investigated concentration range. However, the GLY signal could be suppressed by about 30% in the presence of MET, affecting its pharmacokinetic analysis in simulated samples. As an attempt to solve the suppression of GLY by co-eluting MET, dilution can alleviate the suppression. However, this method still has limitations due to the sacrifice of sensitivity. The stable isotope-labeled internal standard could play a role in correction and improve the quantitative accuracy of GLY, which was further confirmed in the pharmacokinetic study of simulated samples. This study provided an example model to illustrate the possible effect of clinical drug combination on LC-MS/MS drug quantitative analysis and investigated the effective methods to solve this problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.