Abstract

Abstract The creation of chronologies from intra-annual features in tree rings is increasingly utilized in dendrochronology to create season-specific climate histories, among other applications. A conifer latewood-width network has recently been developed for the southwestern United States, but considerable uncertainty remains in understanding site and species differences in signal strength and sample depth requirements. As part of the 22nd annual North American Dendroecological Fieldweek, the first Pinus ponderosa earlywood-width (EW) and latewood-width (LW) chronologies were developed for the Jemez Mountains in northern New Mexico. The aim was to extend an existing total ring-width (TW) chronology and to assess the potential for creating long LW chronologies. Analysis of chronology signal strength suggests that large sample size requirements remain a considerable hurdle for creating P. ponderosa LW chronologies longer than 400 years. At the Cat Mesa site, twenty-three sample trees were required to captu...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.