Abstract

Smoothing of instrumental signals is an important prerequisite in data processing. Various smoothing methods were suggested through the last decades each having their own benefits and drawbacks. Most of the filtering methods are based on averaging in a certain window (e.g., Savitzky-Golay) or on frequency-domain representation (e.g., Fourier filtering). The present study introduces novel approach to signal filtering based on signal variance through PLS (projections on latent structures) regression. The influence of filtering parameters on the smoothed spectrum is explained and real world examples are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.